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ABSTRACT. It is known that a semantically closed theory with description may well
be trivial if the principles concerning denotation and descriptions are formulated in cer-
tain ways, even if the underlying logic is paraconsistent. This paper establishes the non-
triviality of a semantically closed theory with a natural, but non-extensional, description

- operator.
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1. INTRODUCTION: SEMANTIC CLOSURE AND TRIVIALITY

Semantic closure is well known to lead to inconsistency. Specifically, sup-
pose a language contains semantic predicates such as ‘is true’, ‘satisfies’,
‘denotes’; suppose that a theory in that language contains the intuitively
correct axioms governing these predicates, a modicum of self-reference,
and is based on a logic containing a few simple logical principles. Then that
theory is inconsistent. Provided that we choose a suitable paraconsistent
logic as the underlying logic of the theory, however, it may be non-trivial.
- That is, its inconsistencies are localised, and do not spread everywhere.!

It is to be hoped, especially if one is of a dialetheic persuasion, that
the same is true once descriptions are added to the machinery. This is a
sensitive question, though. If one adds descriptions in a simple-minded
way, triviality ensues. Fortunately, if one adds descriptions in a less simple-
minded — but still natural — way, non-trivially is maintained. The point of
this paper is to prove this.? »

I will start by rehearsing some of the difficulties that descriptions cause.
This will lead to a discussion of denotation-failure. After specifying a suit-
able free logic to handle such failure, I will then give the non-triviality
argument.
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2. DENOTATION FAILURE

To illustrate the problems caused by descriptions, suppose that our theory
is one of arithmetic.. Let f be any 1-place arithmetic function. Consider the
term ‘ f of the denotation of this very term’. Call this term 7, and let d be
its denotation. T denotes d, but it also denotes fd. Hence, d = fd. Now
let f be the function that maps O to 1, and everything else to 0. Whatever
dis, fd,isetther lor0.If fd=1, d=1,s0 fd =0.If fd =0, d =0,
so fd = 1. In either case, 0 = 1, and triviality is not far behind.

The precise details of the above argument are spelled out in Priest
(1997) and Priest (1998). The formalised argument uses a few principles of
first order logic (with identity), some principles concerning descriptions,
and the following principle concerning denotation:

Alt)s I+t =s. (Denotation)

Here, Axy means, intuitively, ‘x denotes y’, (¢) is a name for the term ¢,
and o 4 B means o - B and B .3

The natural objection to the above argument is that it fails, since the
term T may, in fact, have no denotation. For the case in question, it would
certainly appear not to have one. This suggests that non-triviality may be
achieved if we take the underlying logic of the theory to be a free paracon-
sistent logic, which allows for denotation-failure.* This is the suggestion
we will pursue. I will take the underlying logic to be LP.> Standardly,
this is not a free logic, but it can easily be turned into one. Doing so
poses several choices, though. A crucial one is how to evaluate atomic
sentences that contain non-denoting terms. The policy adopted here will
be to evaluate such sentences as uniformly false — and not also true. (This
does not, of course, mean that all sentences containing non-denoting terms
are false.) The policy is a very natural one for extensional predicates® —
the only kind at issue here. In the present context, it also has very happy
consequences. For it renders identities of the form ¢ = ¢ untrue if ¢ does
not denote. Now, ¢ = ¢, together with Denotation, entails D(t)t, and hence
dxA(t)x: — everything denotes. In a free logic, this should obviously not
be forthcoming. Without ¢ = ¢, it is not.”

In the following section I will give the formal details of the logic. Next,
I will describe an appropriate treatment of descriptions in the logic. I will
then be in a position to give the required non-triviality proof.
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3. FREE LP

Let L be a first order language with identity and function symbols. Terms
and formulas are defined as usual. I will reserve the word ‘sentence’ for
formulas without free variables. A free L P interpretation is a triple, A =
(D, I, 8), where D is a non-empty domain of objects; § is a partial func-
tion from the set of constants into D; for every n-place function symbol,
f, I(f) is a(total) function from D" to D, and for every n-place predicate,
P, I(P) is a pair (P*, P~), such that P U P~ = D". =7 is the set
{{(x,x); x € D}.1will write §(¢) = o0 to mean that §(¢) is undefined. To
cut a few inessential corners, I will assume that for every d € D, there is in
the language a constant, d, that denotes it. Thus, §(d) = d. (Such constants
can always be added if they are not already present.)

Given an interpretation, the denotation function, §, is extended to a par-
tial function evaluating all closed terms of the language by the (gap-in/gap-
out) recursive condition: if for some 1 < i < n, 6(t;) = 00, 6(ft;...1,)
= 00. Otherwise, 6 (ft1...t,) = I(f)(6(t1), ..., 8(t,)).

_ An evaluation for A is a relation, p4, between the set of sentences and
{1, 0}, satisfying the following conditions:

Pty...typaliffforall 1 <i <n, 8(¢) # oo,
and (8(¢;),...,8(t,)) € P,

Pt ... t,pa0iff forsome 1 <i <n, 6(t;) = o0,
or (forall1 <i <n, 6(t;) £ oo, and (6(t1),...,8(t,)) € P7).

Thus, if a term in an atomic sentence fails to denote, the sentence is simply
false (and not also true). The truth/falsity conditions for Vv, A, =, are as
usual. For the quantifiers:

dxapysl iff forsome d € D, a(x/d)pal,
Axaps0iff foralld € D, a(x/d)p40.

The conditions for V are the obvious dual ones.

Finally, validity: if ¥ U {«r} is a set of sentences, ¥ F « iff for all A, if
B, pal forall B € X, apal.

It is clear that the propositional part of the logic is LP. The quantifier
part is, however, a free logic. In particular, the inference schema o (x /1)
dx« is invalid. To see this, take « to be — Px, and consider an interpretation
in which P~ = ¢, but §(¢) = oo. Then it is easy to check that —Pzp1, but
it is not the case that 3x—Pxp1. Let us write Ey for y = y. Then it is clear
that in any interpretation, Etp1 iff §(¢) # oo. In particular, then, we have:
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E(t),a(x/t) F Jxc. Similar considerations apply to the dual inference:
Vxa b+ a(x/t). This is not valid, but we have: Vxa, Et F a(x/t). Finally,
for identity: it is easy to check that s = ¢, a(x/t) F a(x/¢t). Forif s =t
is true in an interpretation, §(s) # 00, 8(t) # 0o, and s and ¢ denote the
same thing. As we have already observed, the logical validity of the law of
identity, in the form ¢ = ¢, fails; but we do have it in the form Vxx = x.

The general shape of the proof-theory for the logic is, then, clear. Itis an
interesting project to provide a formal characterisation of that theory, and
to prove it sound and complete. However, this is not required for present
purposes, so I shall not pursue the matter here.

One other fact about free LP that will be useful in what follows is a
familiar monotonicity condition. Let A and B be interpretations. I will
write A < B to mean that A and B have the some domain, and for every
atomic formula, «:

apal = appl,
apas0 = app0.

It is easy to show that if A < B, the displayed condition holds for all
formulas. The proof is by a familiar induction, and I omit details.?

4. DESCRIPTIONS

The other machinery involved in the triviality argument is a description
operator. I will now spell out one suitable for the non-triviality argument.’
An (indefinite) description operator, ¢, is added to the language. Terms and
formulas are defined in the usual way.

An interpretation for the new language is a quadruple, (D, I, §, ),
where D, I, and § are as before, and ® is a map from formulas to choice
functions on the power-set of D. Specifically, for every formula, o, and
for every non-empty X € D, ®*X € X. The denotation of closed terms,
and the truth/falsity values of sentences are defined by a joint recursion.
All details are as before, except for the clause for descriptions, which is as
follows. If « is a formula with at most one free variable, x, let us write o
for {d € D; a(x/d)pl}. Thenif @ = ¢, §(exa) = oo; otherwise:

d(exa) = P%.

This theory of descriptions is slightly unusual. It would be more normal
to take & itself to be a choice function, and define & (s¢x«) simply as Po
when @ # ¢. Such a way of handling descriptions verifies extensionality:
if, in an interpretation, @ = B # ¢, exa = exp is true in it. However,
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there seems no intuitive reason as to why one should expect extensionality
to hold: if all and only the men in the room are the rich people in the room,
why should one suppose that ‘a man in the room’ refers to the same thing
as ‘a rich person in the room’?!? In the present treatment, the defining
condition of the description and its extension are taken into account in
determining the description’s denotation.

Non-extensionality has some other consequences for the logic of de-
scriptions which should be noted. Most importantly, the inference Ixa
a(x/exa) is not, in general, valid. Certainly, if Ix« is true in an interpre-
tation, then for some d in the domain both «(x/d) and d = exo are true.
But the substitutivity of identicals is not, in general, valid. (For example,
suppose that d; = d; is true in an interpretation; it does not follow that
exPxd; = exPxd,, since there is no guarantee that ®F*41 = pF*d2))
However, substitutivity of identicals is valid if substitution is not into the
scope of an e-term, as a simple induction demonstrates. It follows that we
do have dxa F a(x/exa), provided that x does not occur within the scope
of an ¢ in .1

Let me make two final comments on the theory of descriptions here.
The first is that the failure of the triviality argument of Section 2, as demon-
strated by the following non-triviality proof, is in no way due to the non-
extensionality of descriptions. This argument contains no substitution into
(or quantification into) s-terms.!?> The second comment is that, notwith-
standing this, the non-extensionality of descriptions is necessary for the
following non-triviality proof to work, as I will point out; and I see no way
of modifying it to verify the properties of an extensional description oper-
ator. (There may, of course, be other non-triviality proofs for extensional
description operators.)

5. THE NON-TRIVIALITY PROOF

Now to the non-triviality proof. Fix L as a language for semantically closed
arithmetic. Specifically, L contains a numeral, n, for every number, 7, and
a bunch of function symbols, including ones for successor, addition and
multiplication. There are just two binary predicates: identity and the deno-
tation predicate, A.!> We assume some fixed arithmetic coding of formulas
of L, and will let (¢) be the numeral of the code of term 7.

We are going to construct an interpretation that models Denotation.!
In addition, all sentences true in the standard model of arithmetic will be
true in the interpretation. In particular, the theory will contain the self-
referential powers that arithmetic gives. Hence, the set of sentences true in
the interpretation will be a free LP theory containing arithmetic, descrip-

4
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tions and Denotation. As it will be easy to see, not everything holds in the
model. Hence, the non-triviality of this theory is established.

The model is.defined by a fixed-point construction of the familiar Krip-
kean kind. We define a sequence of interpretations of L, A; = (N, I, §;,
®;), i € On, by transfinite induction. For every interpretation in the
sequence, the domain is the set of natural numbers, N; I assigns every
arithmetic function symbol its appropriate function; § assigns every nu-
meral the appropriate number, and =~ and A~ are both N2. Hence the
only features of the interpretations that change as we ascend the ordinals
are the ®; and the extension of A.T will write the extension of A in A; as
AQL. I will write pg4, simply as p;, and @; for {n € N; a(x/m)p;1}.

Let me give an informal description of the definition, which may make
it easier to grasp the import of the following details. A starts off as the
empty relation when i = 0. As i increases, if # = n ever becomes true,
((t), n) is thrown into the extension of A, and remains there subsequently.
For any o, ®§ is an arbitrary choice function. Fori > 0, ;X defaults to
®F X; but if, at any stage, &; becomes non-empty, then for all subsequent
Js CD‘}‘oTj is a fixed member of @; (and so, as we shall see, of ;). ’

The precise definitions are as follows. For A*:

_|_ . . .
(m,n) € A iff for some j < i, t =np;l,
where m 1is the code of ¢.

For ®: @Y, is an arbitrary choice function; and if i > 0, ® is the same
as ®§ except that if & has at most one free variable, and for some j < i,
a j ;é 0!

Ol = CD‘;& i, for the least such j.

It is not immediately obvious that these definitions do succeed in speci-
fying an interpretation. Specifically, it is not clear that each &7 is a choice
functien. The next job is to prove this; we will also prove a few other useful
lemmas along the way. B

LEMMA 1. Ifi < j then A} C AT.

Proof. Suppose that (m,n) € A:r. Then for some k£ < i, t = npel,
where m is the code of ¢. Hence, for some k < j, t = npl. That is,
(m,n) € AT. | 0

LEMMA 2. Ifi < j then:

(i) for every (closed) term, t, if 6;(t) = n # 00, §;(t) =n,
(ii) for every sentence, a, op;1 = ap;1 and op;0 = ap;0.
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Proof. Define the depth of a term, t, or formula, «, to be the length of the
longest chain of nested e-terms it contains. (So if & contains no e-terms,
its depth is 0, and the depth of ex Px is 1.) The proof is by induction on
depth. Suppose the result holds for all terms and formulas of depth < n.

For (i): The terms of depth n are made up from constants and e-terms
of depth n, by the application of function symbols. The result is obvious if
t is a constant. Let ¢ be an e-term of depth n. If §; (exar) £ oo, then o; # ¢,
and §; (exar) = @y = P, where k is the least ordinal less than i, such
that oy # ¢. But since the depth of « is less than n, @; C o, by induction
hypothesis. It follows that o; # ¢, and so that §;(sxa) = dDj.‘oTj = O,
as required. Since the interpretations of all function symbols are the same
in A; and A}, the result follows.

For (ii): the formulas of depth n are generated from atomic formu-
las of depth n by means of connectives and quantifiers. Since these be-
have monotonically, it suffices to show the result for atomic sentences. If
s = tp;1 then §;(s) = n # 00, 8;(t) = m # oo, and {n,m) €=".
But s and ¢ have depth < »n; so by induction hypothesis and (i): §;(s) =
- n,dj(t) = m; hence, s = tp;1. The case for 0 is trivial, since s = 0,0 re-
" gardless of whether § ;(s) and §;(¢) are defined. If Astp;1 then §;(s) = n #

00, 6;(t) =m # oo, and (n,m) € A;’. Hence, 6;(s) = n, 8;(t) = m, by
induction hypothesis and (i); and (n, m) € A;F (by Lemma 1); so Astp;1.
The case for 0 is, again, trivial. O

LEMMA 3. Foralli, if o; # ¢, then ®fa; € o;.

Proof. The proof is by transfinite induction on i. If ®¢ = &, the result
follows. So suppose that o has at most one free variable, and for some
Jj <, o; # ¢. Then &fa; = Pfay, for the least such j. By induction
hypothesis, @3-‘04_]- € o; C a;, by Lemma 2(ii). O

Lemma 3 assures us that each A; is a well defined interpretation. By Lemma
1 and the usual cardinality considerations, there must be some ordinal, *,
such that A} = A;LH. A, is our required interpretation. It not difficult to

check that it verifies Denotation.
Note, first, that since (¢) is a numeral §,((¢)) is always defined. Let m
be the code of ¢. Then 6,({¢t)) = m. Thus:

A(t)spsl = 8,(s) =nand (m,n) € Af
= 64(s) =nand t = np;1 for some i < *
= 04(s) =nandt =np,1 by Lemma 2(ii)
= = 5pl.
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Conversely:

t =s5p,1 = 6,(s) =n#ooandt =np,l
= 8,(s) =nand (m,n) € A}
= 84(s) =nand (m,n) € A}
= A(t)spsl.

Finally, it is not difficult to see that everything true in the standard
model of arithmetic is true in A,. For as far as the purely arithmetic lan-
guage (i.e., the language not containing A or ¢) goes, if B is the standard
model of arithmetic B < A,. The result follows by monotonicity.'>

Thus, the set of sentences true in A, is a free LP theory with descrip-
tions, containing arithmetic, and closed under Denotation. But, as is clear,
0 = 1is not true in A,. Hence, this theory is non-trivial.

6. CONCLUSIONS

Let me finish with a few observations about the proof. The core of the
construction is that required to obtain the monotonicity lemma, Lemma
2. Two devices secure this. One guarantees that the denotation of an ¢-
term, exa, once obtained, remains fixed. This is secured by letting ®*a be
an arbitrary member of &, the first time that this set becomes non-empty,
and then persisting with this selection for subsequent ®%«. It is this that
requires the failure of extensionality for descriptions. For @ and f may
come to be identical, by which time their selected members are already
fixed and different.

The other device ensures that truth values are never lost as we ascend
the ordinals. This is secured by requiring the antiextension of both = and
A to be D?. Hence, atomic sentences that start off as false due to a non-
denoting term, continue to be so, even once the term obtains a denotation
(though they may then become true as well). A consequence of this is that
the non-triviality result is a fairly crude one, in a certain sense; namely,
it does not show that any negated atomic sentences is not provable in the
theory. Hopefully, a more refined proof is possible to show that this is not
the case.

The second comment concerns a detachable conditional connective, —.
The language of the theory proved non-trivial above does not contain such
a connective. A natural question is, therefore: can the non-triviality proof
be extended to one for a language which does, and in which Denotation is
formulated as a biconditional? There are techniques, due to Brady, which
give such an extension in the description-free case.!6 I think it likely that
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they can be applied in the present case too, though I have not worked

through the details.
One consequence of such an extension of the proof would be the fol-

lowing. In the language with a conditional connective, one may define
definite description terms, (x@(x), as: ex(@(x) AVy(p(y) => x = y). Itis
clear that at most one thing can satisfy the condition of such a description.
~ Such terms are therefore, perforce, extensional.!” And in a language whose
only descriptive terms are (-terms, terms would not have the more unusual
features of non-extensional descriptions that I noted in Section 4.8

NOTES

L' A1l this is documented in Priest (199+), Section 8.

2 A non-triviality proof for a semantically closed theory with descriptions is given in
Priest (1998). As is pointed out there (Section 8), though, this construction does not provide
everything that might be desired. In particular, the logic of identity in the theory is highly
non-standard, failing transitivity of identity.

3 In Priest (1997), the argument is formulated in terms of a denotation function, and
Denotation is formulated as a biconditional. But this is an inessential difference, as Priest
(1998) shows. In particular, a denotation function, §(x), can be defined as ey Axy, where ¢
is an appropriate description operator.

4 With classical logic, allowing for denotation failure is of no help. This is because, even
if some descriptions fail to denote, one can define a kind of description that always does so
(‘a thing that satisfies «, if there is such a thing, or 0 otherwise’). The above argument can
be run with this kind of description. This version of the argument does use the disjunctive
syllogism, however, and so fails with a paraconsistent logic. See Priest (1997).

5 See, e.g., Priest (1987), Ch. 5.

© This claim is defended in Priest (1979).

7 Rejecting ¢ = ¢ is not mandatory for blocking this result, though. We might endorse
t = t, and rely on the failure of existential generalisation in free logic to block it.

8 See Priest (1998), Section 6.4.

9 This is essentially the theory of descriptions given in Priest (1979).

10 This is argued further in Priest (1979).

11 1t is also worth noting that universal instantiation (and its dual, existential generalisa-
tion) may also break down if quantifying into the scope of an e-term, even when the term
being substituted denotes. For example, it is easy enough to construct an interpretation in
which Vx (e = ey Pyx) is true: for every d € D, simply arrange for oP*dpxdtobee. If ¢
is any other term, however, % Pyt may well be distinct from e.

12 As can be seen by checking the details in Priest (1998), Section 3.

13 A truth predicate can be defined in terms of A and &. See Priest (1998), Section 6.

14 1f terms fail to denote, one might want to restrict Denotation itself to those terms, ¢,
that denote; but this is not necessary in the present approach.

15 1t js easy to check that the model also verifies the inference Ixo + exa = exo. It
quickly follows that it also verifies the inference Ixa F IyA(exa)y. This inference is
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used in the extended version of the triviality argument described in fn. 4. See Priest (1997),

Section 7.

16 See Priest (199+), 8.2.

17 Note that terms of the form txA(t)x, would always have a denotation if # does, due to
(the conditional form of) Denotation.

181 would like to thank a referee of the journal for some helpful comments on the
presentation of the non-triviality proof.
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